Disruption That’s Here to Stay: Skills Language & Talent Intelligence 

Across industries, the state of workforce management has been rocked by perpetual change over the last three years. If one truth has arisen from trends like the war for talent and the great resignation, it’s this: People are an organization’s greatest asset. 

Without the right people in best-fit roles, businesses risk obsolescence in a competitive landscape driven by new and evolving in-demand skills. So real is the challenge, a majority of CEOs have reported that the ability to hire and retain skilled talent is their most critical barrier to achieving growth.

Unified Language: The Importance of Skills

For HR leaders, the new world of work demands that talent have the specific capabilities needed in order to succeed in their role. Gone are the days of impressive titles or degrees; in-demand skills are what make or break recruiting efforts. Internal mobility is forever changed as well, with the upward professional ladder climb giving way to a more agile rock wall where skills-based opportunities can come from any direction in a myriad of forms. Roles, projects, gigs, mentorships, learning pathways–all are integral parts of today’s professional development spectrum.

AI: The Rise of Talent Intelligence

To break down every open role and job description into skills needed, or to scan every CV into skills language, would take a traditional HR team more hours than are even close to possible. Yet having a clear understanding of what skills they already have in their workforce, where the skill gaps are located, and which internal or external candidates can bring those skills to the table is critical to future-proofing their organization.

To both expedite the process, and to do so with granular precision, HR innovators are increasingly implementing talent intelligence solutions

What is Talent Intelligence?

Talent intelligence is AI-driven technology that unifies, organizes and interprets a company’s internal data, and combines it with external data on market trends,  emerging skills and labor statistics  in a way that informs and empowers HR leaders to make better workforce planning business decisions. Similar to the groundbreaking capabilities demonstrated by ChatGPT, talent intelligence uses generative AI with similar language processing technology, but expands on the model to provide a fully explainable enterprise-level solution. Built on ethical, Responsible AI means such solutions actively mitigate the risk of unintended bias seeping into machine learning cycles, which can derail DEI hiring practices. 

AI-driven Talent Intelligence and Skills Matching

Using talent intelligence to synthesize the combination of AI capabilities and skills-focused workforce development empowers HR leaders to make faster, better business decisions.

Skills Architecture

Making the best decisions around hiring and internal mobility means HR leaders need to have a clear, granular view of what capabilities their employees have, where the skills gaps lie, and how to future-proof their workforce through developing talent.

Using AI-driven talent intelligence to skills-map an enterprise workforce, HRs can establish unified skills language and an agreed-upon skills framework. Matching it with data insights, they can then align talent decisions with organizational goals.

Talent Acquisition

It’s estimated that in the U.S., it takes more than a month to fill an open position–and that on average, an HR leader must review more than 150 CVs for a single role. Multiply that across a large hiring initiative and there’s a very real cost to an enterprise, including recruiting expenses, time invested by departmental leaders and managers in supporting the hiring process, and the productivity disruption of a prolonged vacancy.

AI-driven talent intelligence helps HRs zero in on best-fit candidates more quickly by analyzing applicants at an atomic level, breaking down their talents into individual skills. Matching applicants with open opportunities, roles or projects based solely on skills means HR leaders can link candidates to best-fit roles with room to grow; and they support DEI goals by eliminating demographic or other information that can introduce unintended bias into the equation.

Talent Management 

As millions of workers quit their jobs during the Great Resignation, one reason continually showed up in the research: Lack of opportunity for advancement. Put simply, at a time when there are more open roles than there are candidates going after them, HR leaders must strategize how to provide employees with a vision for future opportunities that will utilize, challenge and develop a worker’s skills.

AI-driven talent intelligence gives HRs a watchtower view of their workforce, including a granular understanding of employees’ strengths, skills gaps, potential capabilities and hidden talents. Fueled by these insights, HR leaders can provide their talent with personalized career pathing, internal mobility opportunities including roles, projects, gigs and mentorships–providing the kind of positive, proactive employee engagement that’s more likely to retain valuable talent. 

 

retrain.ai is a talent intelligence platform designed to help enterprises hire, retain, and develop their workforce, intelligently. Leveraging Responsible AI and the industry’s largest skills taxonomy, enterprises unlock talent insights and optimize their workforce effectively to lower attrition, win the war for talent and the great resignation in one, data-driven solution. To see it in action, request a demo

The 5 Pillars of Responsible AI

Beginning in April 2023, NYC employers—and all organizations hiring and doing business in NYC—will be subject to one of the most stringent regulations governing AI to date. We’ve written extensively about the evolution of Local Law #144, which prohibits employers from using Automated Employment Decision Tools (AEDT) in hiring and promotion decisions unless they’ve taken affirmative measures. Specifically, employers using AEDTs in hiring must have them independently audited and must notify candidates in advance of their use. 

Why is this important?

As AI becomes more embedded in HR systems, enterprise leaders face increased responsibility to ensure their solutions use Responsible AI to mitigate unintended bias risk. 

What exactly makes AI responsible?

Responsible AI uses specific methodologies that continuously test for bias against personal characteristics and eliminate information that can introduce unintended bias. 

In all, there are 5 pillars of Responsible AI:

 

  • Explainability and Interpretability – AI machine learning outcomes, as well as the methodology which produces them, are explainable in easily understandable business-speak. Platform users have visibility into the external and internal data being utilized and the platform’s data structurization and outcomes delivery.
  • Fairness algorithms – AI machine learning models mitigate unwanted bias by focusing on role requirements, skills maps and dynamic employee profiles while masking demographic and other information that can potentially introduce bias.
  • Robustness – Data used to test bias is expansive enough to accurately represent a large data pool while being granular enough to provide accurate, detailed results.
  • Data Quality and Rights – AI system complies with data privacy regulations, offering transparency to the user around proper sourcing and usage of data, and avoiding using data beyond its intended and stated use.
  • Accountability – AI systems meet rigorous accountability standards for proper functioning, responsible methodology and outcomes, and regular compliance testing. 

In addition to building our Talent Intelligence Platform on Responsible AI from the ground up, retrain.ai exemplifies a larger overall commitment to innovation built on Responsible AI. As such, we work with the Responsible Artificial Intelligence Institute (RAII), a leading nonprofit organization building tangible governance tools for trustworthy, safe, and fair artificial intelligence. To learn more, visit our Responsible AI Hub.

 

retrain.ai is a talent intelligence platform designed to help enterprises hire, retain, and develop their workforce, intelligently. Leveraging Responsible AI and the industry’s largest skills taxonomy, enterprises unlock talent insights and optimize their workforce effectively to lower attrition, win the war for talent and the great resignation in one, data-driven solution.

To see it in action, request a demo.

ChatGPT Is Changing the AI Game, But Enterprises Need More

Chances are you’re one of the millions of people who have played with ChatGPT, the game-changing generative AI assistive technology released by OpenAI. Designed to interact conversationally, the advanced chatbot can engage in dialogue with a user to provide answers, respond to follow-up questions, correct mistakes, and adjust tone and voice when provided with direction. 

A consumer-focused tool, ChatGPT aptly showcases the groundbreaking ability of generative AI to use machine learning to index retrievable content and mimic writing styles. As such, it has prompted a conversation around its possible business uses, garnering opinions from those who see great potential–and those who fear for their jobs. Some even suggest that we are nearing the singularity, or at least seeing for the first time machines that can pass the (in)famous Turing test.

>> Book a demo to see retrain.ai’s generative AI in action

As leaders in the AI space, we see ChatGPT as an example of a set of tools with the potential to transform business processes. Yet it has notable limitations when viewed through the lens of an enterprise-level solution. There are four main areas in which this differentiation is most apparent:

  1. AI-driven technology designed for business incorporates features optimized for a particular industry. retrain.ai, for example, was built from the ground up as a specialized solution for the HR space. As such, our technology expands beyond a ChatGPT-level machine learning model to one which can organize, analyze and structure data precisely enough to inform critical business decisions. We anticipate that in each industry, vertical-specific leaders will emerge who build AI models that are based on industry know-how and language, and are tailored toward specific tasks.
  2. Explainability is another critical feature of specialized AI technologies that you won’t find in a general-purpose chatbot platform. Explainable solutions are referred to as white-box technology, meaning machine learning outcomes, and the methodology which produces them, can be explained using general business-speak. For enterprises trusting generative AI systems with critical decision assistance, this means they have a clear enough understanding to question or challenge the platform’s output. 
  3. Without white-box explainability, an AI system is lacking a key component of Responsible AI, a non-negotiable design element, when it comes to bias prevention in hiring processes. Only by using Responsible AI can an enterprise ensure candidates are being screened solely on skills, eliminating information that can introduce unintended bias. Increasing regulations will also hold enterprises accountable for making sure they are using Responsible AI in hiring practices.
  4. Enterprise-level solutions are implemented to directly impact business performance. They come with contractual assurances like Service Level Agreements (SLAs) to outline vendor expectations and set metrics by which the technology’s effectiveness will be measured. Open platforms like ChatGPT don’t offer performance metrics or customized services, leaving adopters with no recourse should something go wrong. The same is true about data sovereignty, and compliance with privacy standards like GDPR. We anticipate that the big vendors like Microsoft and Google will soon offer enterprise grade service assurances around consumer tools like ChatGPT (or Google’s Lambda), but until that time, the use of consumer tools cannot be relied upon.

The retrain.ai Talent Intelligence Platform uses generative AI with similar language processing technology to ChatGPT’s, but expands on the model to provide a fully explainable enterprise-level solution designed specifically for talent intelligence, while complying with SOC2, GDRP, and offering enterprise grade SLA. We’re excited to see how the market continues to develop and how enterprises transform years old practices with new tools. 

>> Book a demo to see retrain.ai’s generative AI in action

See how the retrain.ai Talent Intelligence Platform fuels your talent acquisition, talent management, job architecture and DEI goals, contact us today. 

retrain.ai is a Talent Intelligence Platform designed to help enterprises hire, retain, and develop their workforce, intelligently. Leveraging Responsible AI and the industry’s largest skills architecture, enterprises unlock talent insights and optimize their workforce effectively to lower attrition, win the war for talent and the great resignation in one, data-driven solution.

Learn more: book a demo